**** ROTATE **** **** ROTATE **** **** ROTATE **** **** ROTATE ****

Find this Story

Print, a form you can hold

Wireless download to your Amazon Kindle

Look for a summary or analysis of this Story.

Enjoy this? Share it!

PAGE 5

The Nebular Hypothesis
by [?]

“This combination of characters, rightly considered, is in a high degree instructive, affording an insight into the probable comparative distance of stars and nebulae, and the real brightness of individual stars as compared with one another. Taking the apparent semidiameter of the nubecula major at three degrees, and regarding its solid form as, roughly speaking, spherical, its nearest and most remote parts differ in their distance from us by a little more than a tenth part of our distance from its center. The brightness of objects situated in its nearer portions, therefore, cannot be much exaggerated, nor that of its remoter much enfeebled, by their difference of distance; yet within this globular space, we have collected upwards of six hundred stars of the seventh, eighth, ninth, and tenth magnitudes, nearly three hundred nebulae, and globular and other clusters, of all degrees of resolvability, and smaller scattered stars innumerable of every inferior magnitude, from the tenth to such as by their multitude and minuteness constitute irresolvable nebulosity, extending over tracts of many square degrees. Were there but one such object, it might be maintained without utter improbability that its apparent sphericity is only an effect of foreshortening, and that in reality a much greater proportional difference of distance between its nearer and more remote parts exists. But such an adjustment, improbable enough in one case, must be rejected as too much so for fair argument in two. It must, therefore, be taken as a demonstrated fact, that stars of the seventh or eighth magnitude and irresolvable nebula may co-exist within limits of distance not differing in proportion more than as nine to ten.”–Outlines of Astronomy (10th Ed.), pp. 656-57.

This supplies yet another reductio ad absurdum of the doctrine we are combating. It gives us the choice of two incredibilities. If we are to believe that one of these included nebulae is so remote that its hundred thousand stars look like a milky spot, invisible to the naked eye; we must also believe that there are single stars so enormous that though removed to this same distance they remain visible. If we accept the other alternative, and say that many nebulae are no further off than our own stars of the eighth magnitude; then it is requisite to say that at a distance not greater than that at which a single star is still faintly visible to the naked eye, there may exist a group of a hundred thousand stars which is invisible to the naked eye. Neither of these suppositions can be entertained. What, then, is the conclusion that remains? This only:–that the nebulae are not further from us than parts of our own sidereal system, of which they must be considered members; and that when they are resolvable into discrete masses, these masses cannot be considered as stars in anything like the ordinary sense of that word.[12]

And now, having seen the untenability of this idea, rashly espoused by sundry astronomers, that the nebulae are extremely remote galaxies; let us consider whether the various appearances they present are not reconcilable with the Nebular Hypothesis.

* * * * *

Given a rare and widely-diffused mass of nebulous matter, having a diameter, say, of one hundred times that of the Solar System,[13] what are the successive changes that may be expected to take place in it? Mutual gravitation will approximate its atoms or its molecules; but their approximation will be opposed by that atomic motion the resultant of which we recognize as repulsion, and the overcoming of which implies the evolution of heat. As fast as this heat partially escapes by radiation, further approximation will take place, attended by further evolution of heat, and so on continuously: the processes not occurring separately as here described, but simultaneously, uninterruptedly, and with increasing activity. When the nebulous mass has reached a particular stage of condensation–when its internally-situated atoms have approached to within certain distances, have generated a certain amount of heat, and are subject to a certain mutual pressure, combinations may be anticipated. Whether the molecules produced be of kinds such as we know, which is possible, or whether they be of kinds simpler than any we know, which is more probable, matters not to the argument. It suffices that molecular unions, either between atoms of the same kind or between atoms of different kinds, will finally take place. When they do take place, they will be accompanied by a sudden and great disengagement of heat; and until this excess of heat has escaped, the newly-formed molecules will remain uniformly diffused, or, as it were, dissolved in the pre-existing nebulous medium.