PAGE 15
The Nebular Hypothesis
by
Most significant fact of all, however, is that presented by the rings of Saturn. As Laplace remarks, they are, as it were, still extant witnesses of the genetic process he propounded. Here we have, continuing permanently, forms of aggregation like those through which each planet and satellite once passed; and their movements are just what, in conformity with the hypothesis, they should be. “La duree de la rotation d’une planete doit donc etre, d’apres cette hypothese, plus petite que la duree de la revolution du corps le plus voisin qui circule autour d’elle,” says Laplace. And he then points out that the time of Saturn’s rotation is to that of his rings as 427 to 438–an amount of difference such as was to be expected.[19]
Respecting Saturn’s rings it may be further remarked that the place of their occurrence is not without significance.
Rings detached early in the process of concentration, consisting of gaseous matter having extremely little power of cohesion, can have little ability to resist the disruptive forces due to imperfect balance; and, therefore, collapse into satellites. A ring of a denser kind, whether solid, liquid, or composed of small discrete masses (as Saturn’s rings are now concluded to be), we can expect will be formed only near the body of a planet when it has reached so late a stage of concentration that its equatorial portions contain matters capable of easy precipitation into liquid and, finally, solid forms. Even then it can be produced only under special conditions. Gaining a rapidly-increasing preponderance as the gravitative force does during the closing stages of concentration, the centrifugal force cannot, in ordinary cases, cause the leaving behind of rings when the mass has become dense. Only where the centrifugal force has all along been very great, and remains powerful to the last, as in Saturn, can we expect dense rings to be formed.
We find, then, that besides those most conspicuous peculiarities of the Solar System which first suggested the theory of its evolution, there are many minor ones pointing in the same direction. Were there no other evidence, these mechanical arrangements would, considered in their totality, go far to establish the Nebular Hypothesis.
* * * * *
From the mechanical arrangements of the Solar System, turn we now to its physical characters; and, first, let us consider the inferences deducible from relative specific gravities.
The fact that, speaking generally, the denser planets are the nearer to the Sun, has been by some considered as adding another to the many indications of nebular origin. Legitimately assuming that the outermost parts of a rotating nebulous spheroid, in its earlier stages of concentration, must be comparatively rare; and that the increasing density which the whole mass acquires as it contracts, must hold of the outermost parts as well as the rest; it is argued that the rings successively detached will be more and more dense, and will form planets of higher and higher specific gravities. But passing over other objections, this explanation is quite inadequate to account for the facts. Using the Earth as a standard of comparison, the relative densities run thus:–
Neptune. Uranus. Saturn. Jupiter. Mars. Earth. Venus. Mercury. Sun.
0.17 0.25 0.11 0.23 0.45 1.00 0.92 1.26 0.25
Two insurmountable objections are presented by this series. The first is, that the progression is but a broken one. Neptune is denser than Saturn, which, by the hypothesis, it ought not to be. Uranus is denser than Jupiter, which it ought not to be. Uranus is denser than Saturn, and the Earth is denser than Venus–facts which not only give no countenance to, but directly contradict, the alleged explanation. The second objection, still more manifestly fatal, is the low specific gravity of the Sun. If, when the matter of the Sun filled the orbit of Mercury, its state of aggregation was such that the detached ring formed a planet having a specific gravity equal to that of iron; then the Sun itself, now that it has concentrated, should have a specific gravity much greater than that of iron; whereas its specific gravity is only half as much again as that of water. Instead of being far denser than the nearest planet, it is but one-fifth as dense.