PAGE 6
The Factors Of Organic Evolution
by
* * * * *
Difficulties of another class may next be exemplified–those which present themselves when we ask how there can be effected by the selection of favourable variations, such changes of structure as adapt an organism to some useful action in which many different parts co-operate. None can fail to see how a simple part may, in course of generations, be greatly enlarged, if each enlargement furthers, in some decided way, maintenance of the species. It is easy to understand, too, how a complex part, as an entire limb, may be increased as a whole by the simultaneous due increase of its co-operative parts; since if, while it is growing, the channels of supply bring to the limb an unusual quantity of blood, there will naturally result a proportionately greater size of all its components–bones, muscles, arteries, veins, etc. But though in cases like this, the co-operative parts forming some large complex part may be expected to vary together, nothing implies that they necessarily do so; and we have proof that in various cases, even when closely united, they do not do so. An example is furnished by those blind crabs named in the Origin of Species which inhabit certain dark caves of Kentucky, and which, though they have lost their eyes, have not lost the foot-stalks which carried their eyes. In describing the varieties which have been produced by pigeon-fanciers, Mr. Darwin notes the fact that along with changes in length of beak produced by selection, there have not gone proportionate changes in length of tongue. Take again the case of teeth and jaws. In mankind these have not varied together. During civilization the jaws have decreased, but the teeth have not decreased in proportion; and hence that prevalent crowding of them, often remedied in childhood by extraction of some, and in other cases causing that imperfect development which is followed by early decay. But the absence of proportionate variation in co-operative parts that are close together, and are even bound up in the same mass, is best seen in those varieties of dogs named above as illustrating the inherited effects of disuse. We see in them, as we see in the human race, that diminution in the jaws has not been accompanied by corresponding diminution in the teeth. In the catalogue of the College of Surgeons Museum, there is appended to the entry which identifies a Blenheim Spaniel’s skull, the words–“the teeth are closely crowded together,” and to the entry concerning the skull of a King Charles’s Spaniel the words–“the teeth are closely packed, p. 3, is placed quite transversely to the axis of the skull.” It is further noteworthy that in a case where there is no diminished use of the jaws, but where they have been shortened by selection, a like want of concomitant variation is manifested: the case being that of the bull-dog, in the upper jaw of which also, “the premolars … are excessively crowded, and placed obliquely or even transversely to the long axis of the skull.”[41]
If, then, in cases where we can test it, we find no concomitant variation in co-operative parts that are near together–if we do not find it in parts which, though belonging to different tissues, are so closely united as teeth and jaws–if we do not find it even when the co-operative parts are not only closely united, but are formed out of the same tissue, like the crab’s eye and its peduncle; what shall we say of co-operative parts which, besides being composed of different tissues, are remote from one another? Not only are we forbidden to assume that they vary together, but we are warranted in asserting that they can have no tendency to vary together. And what are the implications in cases where increase of a structure can be of no service unless there is concomitant increase in many distant structures, which have to join it in performing the action for which it is useful?