PAGE 28
The Factors Of Organic Evolution
by
Fully to perceive the way in which these evidences compel us to recognize the influence of the medium as a primordial factor, we need but conceive them as interpreted without it. Suppose, for instance, we say that the structure of the epidermis is wholly determined by the natural selection of favourable variations; what must be the position taken in presence of the fact above named, that when mucous membrane is exposed to the air its cell-structure changes into the cell-structure of skin? The position taken must be this:–Though mucous membrane in a highly-evolved individual organism, thus shows the powerful effect of the medium on its surface; yet we must not suppose that the medium had the effect of producing such a cell-structure on the surfaces of primitive forms, undifferentiated though they were; or, if we suppose that such an effect was produced on them, we must not suppose that it was inheritable. Contrariwise, we must suppose that such effect of the medium either was not wrought at all, or that it was evanescent: though repeated through millions upon millions of generations it left no traces. And we must conclude that this skin-structure arose only in consequence of spontaneous variations not physically initiated (though like those physically initiated) which natural selection laid hold of and increased. Does any one think this a tenable position?
* * * * *
And now we approach the last and chief series of morphological phenomena which must be ascribed to the direct action of environing matters and forces. These are presented to us when we study the early stages in the development of the embryos of the Metazoa in general.
We will set out with the fact already noted in passing, that after repeated spontaneous fissions have changed the original fertilized germ-cell into that cluster of cells which forms a gemmule or a primitive ovum, the first contrast which arises is between the peripheral parts and the central parts. Where, as with lower creatures which do not lay up large stores of nutriment with the germs of their offspring, the inner mass is inconsiderable, the outer layer of cells, which are presently made quite small by repeated subdivisions, forms a membrane extending over the whole surface–the blastoderm. The next stage of development, which ends in this covering layer becoming double, is reached in two ways–by invagination and by delamination; but which is the original way and which the abridged way, is not quite certain. Of invagination, multitudinously exemplified in the lowest types, Mr. Balfour says:–“On purely a priori grounds there is in my opinion more to be said for invagination than for any other view”;[57] and, for present purposes, it will suffice if we limit ourselves to this: making its nature clear to the general reader by a simple illustration.
Take a small india-rubber ball–not of the inflated kind, nor of the solid kind, but of the kind about an inch or so in diameter with a small hole through which, under pressure, the air escapes. Suppose that instead of consisting of india-rubber its wall consists of small cells made polyhedral in form by mutual pressure, and united together. This will represent the blastoderm. Now with the finger, thrust in one side of the ball until it touches the other: so making a cup. This action will stand for the process of invagination. Imagine that by continuance of it, the hemispherical cup becomes very much deepened and the opening narrowed, until the cup becomes a sac, of which the introverted wall is everywhere in contact with the outer wall. This will represent the two-layered “gastrula”–the simplest ancestral form of the Metazoa: a form which is permanently represented in some of the lowest types; for it needs but tentacles round the mouth of the sac, to produce a common hydra. Here the fact which it chiefly concerns us to remark, is that of these two layers the outer, called in embryological language the epiblast, continues to carry on direct converse with the forces and matters in the environment; while the inner, called the hypoblast, comes in contact with such only of these matters as are put into the food-cavity which it lines. We have further to note that in the embryos of Metazoa at all advanced in organization, there arises between these two layers a third–the mesoblast. The origin of this is seen in types where the developmental process is not obscured by the presence of a large food-yolk. While the above-described introversion is taking place, and before the inner surfaces of the resulting epiblast and hypoblast have come into contact, cells, or amoeboid units equivalent to them, are budded off from one or both of these inner surfaces, or some part of one or other; and these form a layer which eventually lies between the other two–a layer which, as this mode of formation implies, never has any converse with the surrounding medium and its contents, or with the nutritive bodies taken in from it. The striking facts to which this description is a necessary introduction, may now be stated. From the outer layer, or epiblast, are developed the permanent epidermis and its out-growths, the nervous system, and the organs of sense. From the introverted layer, or hypoblast, are developed the alimentary canal and those parts of its appended organs, liver, pancreas, etc., which are concerned in delivering their secretions into the alimentary canal, as well as the linings of those ramifying tubes in the lungs which convey air to the places where gaseous exchange is effected. And from the mesoblast originate the bones, the muscles, the heart and blood-vessels, and the lymphatics, together with such parts of various internal organs as are most remotely concerned with the outer world. Minor qualifications being admitted, there remain the broad general facts, that out of that part of the external layer which remains permanently external, are developed all the structures which carry on intercourse with the medium and its contents, active and passive; out of the introverted part of this external layer, are developed the structures which carry on intercourse with the quasi-external substances that are taken into the interior–solid food, water, and air; while out of the mesoblast are developed structures which have never had, from first to last, any intercourse with the environment. Let us contemplate these general facts.