PAGE 20
The Factors Of Organic Evolution
by
An observant rambler along shores, will, here and there, note places where the sea has deposited things more or less similar, and separated them from dissimilar things–will see shingle parted from sand; larger stones sorted from smaller stones; and will occasionally discover deposits of shells more or less worn by being rolled about. Sometimes the pebbles or boulders composing the shingle at one end of a bay, he will find much larger than those at the other: intermediate sizes, having small average differences, occupying the space between the extremes. An example occurs, if I remember rightly, some mile or two to the west of Tenby; but the most remarkable and well-known example is that afforded by the Chesil bank. Here, along a shore some sixteen miles long, there is a gradual increase in the sizes of the stones; which, being at one end but mere pebbles, are at the other end immense boulders. In this case, then, the breakers and the undertow have effected a selection–have at each place left behind those stones which were too large to be readily moved, while taking away others small enough to be moved easily. But now, if we contemplate exclusively this selective action of the sea, we overlook certain important effects which the sea simultaneously works. While the stones have been differently acted upon in so far that some have been left here and some carried there; they have been similarly acted upon in two allied, but distinguishable, ways. By perpetually rolling them about and knocking them one against another, the waves have so broken off their most prominent parts as to produce in all of them more or less rounded forms; and then, further, the mutual friction of the stones simultaneously caused, has smoothed their surfaces. That is to say in general terms, the actions of environing agencies, so far as they have operated indiscriminately, have produced in the stones a certain unity of character; at the same time that they have, by their differential effects, separated them: the larger ones having withstood certain violent actions which the smaller ones could not withstand.
Similarly with other assemblages of objects which are alike in their primary traits but unlike in their secondary traits. When simultaneously exposed to the same set of actions, some of these actions, rising to a certain intensity, may be expected to work on particular members of the assemblage changes which they cannot work in those which are markedly unlike; while others of the actions will work in all of them similar changes, because of the uniform relations between these actions and certain attributes common to all members of the assemblage. Hence it is inferable that on living organisms, which form an assemblage of this kind, and are unceasingly exposed in common to the agencies composing their inorganic environments, there must be wrought two such sets of effects. There will result a universal likeness among them consequent on the likeness of their respective relations to the matters and forces around; and there will result, in some cases, the differences due to the differential effects of these matters and forces, and in other cases, the changes which, being life-sustaining or life-destroying, eventuate in certain natural selections.
I have, above, made a passing reference to the fact that Mr. Darwin did not fail to take account of some among these effects directly produced on organisms by surrounding inorganic agencies. Here are extracts from the sixth edition of the Origin of Species showing this.
“It is very difficult to decide how far changed conditions, such as of climate, food, etc., have acted in a definite manner. There is reason to believe that in the course of time the effects have been greater than can be proved by clear evidence…. Mr. Gould believes that birds of the same species are more brightly coloured under a clear atmosphere, than when living near the coast or on islands; and Wollaston is convinced that residence near the sea affects the colours of insects. Moquin-Tandon gives a list of plants which, when growing near the sea-shore, have their leaves in some degree fleshy, though not elsewhere fleshy” (pp. 106-7). “Some observers are convinced that a damp climate affects the growth of the hair, and that with the hair the horns are correlated” (p. 159).