**** ROTATE **** **** ROTATE **** **** ROTATE **** **** ROTATE ****

Find this Story

Print, a form you can hold

Wireless download to your Amazon Kindle

Look for a summary or analysis of this Story.

Enjoy this? Share it!

PAGE 10

Progress: Its Law And Cause
by [?]

Thus much premised, we pass at once to the statement of the law, which is this:–Every active force produces more than one change–every cause produces more than one effect.

To make this proposition comprehensible, a few examples must be given. When one body strikes another, that which we usually regard as the effect, is a change of position or motion in one or both bodies. But a moment’s thought shows us that this is a very incomplete view of the matter. Besides the visible mechanical result, sound is produced; or, to speak accurately, a vibration in one or both bodies, which is communicated to the surrounding air; and under some circumstances we call this the effect. Moreover, the air has not only been made to undulate, but has had currents caused in it by the transit of the bodies. Further, there is a disarrangement of the particles of the two bodies in the neighbourhood of their point of collision; amounting, in some cases, to a visible condensation. Yet more, this condensation is accompanied by the disengagement of heat. In some cases a spark–that is, light–results, from the incandescence of a portion struck off; and sometimes this incandescence is associated with chemical combination. Thus, by the mechanical force expended in the collision, at least five, and often more, different kinds of changes have been produced. Take, again, the lighting of a candle. Primarily this is a chemical change consequent on a rise of temperature. The process of combination having once been started by extraneous heat, there is a continued formation of carbonic acid, water, &c.–in; itself a result more complex than the extraneous heat that first caused it. But accompanying this process of combination there is a production of heat; there is a production of light; there is an ascending column of hot gases generated; there are inflowing currents set going in the surrounding air. Moreover, the complicating of effects does not end here: each of the several changes produced becomes the parent of further changes. The carbonic acid given off will by and by combine with some base; or under the influence of sunshine give up its carbon to the leaf of a plant. The water will modify the hygrometric state of the air around; or, if the current of hot gases containing it comes against a cold body, will be condensed: altering the temperature of the surface it covers. The heat given out melts the subjacent tallow, and expands whatever it warms. The light, falling on various substances, calls forth from them reactions by which its composition is modified; and so divers colours are produced. Similarly even with these secondary actions, which may be traced out into ever-multiplying ramifications, until they become too minute to be appreciated. And thus it is with all changes whatever. No case can be named in which an active force does not evolve forces of several kinds, and each of these, other groups of forces. Universally the effect is more complex than the cause.

Doubtless the reader already foresees the course of our argument. This multiplication of effects, which is displayed in every event of to-day, has been going on from the beginning; and is true of the grandest phenomena of the universe as of the most insignificant. From the law that every active force produces more than one change, it is an inevitable corollary that during the past there has been an ever-growing complication of things. Throughout creation there must have gone on, and must still go on, a never-ceasing transformation of the homogeneous into the heterogeneous. Let us trace this truth in detail.

Without committing ourselves to it as more than a speculation, though a highly probable one, let us again commence with the evolution of the Solar System out of a nebulous medium. The hypothesis is that from the mutual attraction of the molecules of a diffused mass whose form is unsymmetrical, there results not only condensation but rotation. While the condensation and the rate of rotation go on increasing, the approach of the molecules is necessarily accompanied by an increasing temperature. As the temperature rises, light begins to be evolved; and ultimately there results a revolving sphere of fluid matter radiating intense heat and light–a sun. There are reasons for believing that, in consequence of the higher tangential velocity originally possessed by the outer parts of the condensing nebulous mass, there will be occasional detachments of rotating rings; and that, from the breaking up of these nebulous rings, there will arise masses which in the course of their condensation repeat the actions of the parent mass, and so produce planets and their satellites–an inference strongly supported by the still extant rings of Saturn. Should it hereafter be satisfactorily shown that planets and satellites were thus generated, a striking illustration will be afforded of the highly heterogeneous effects produced by the primary homogeneous cause; but it will serve our present purpose to point to the fact that from the mutual attraction of the particles of an irregular nebulous mass there result condensation, rotation, heat, and light.