**** ROTATE **** **** ROTATE **** **** ROTATE **** **** ROTATE ****

Find this Story

Print, a form you can hold

Wireless download to your Amazon Kindle

Look for a summary or analysis of this Story.

Enjoy this? Share it!

PAGE 5

Fossil Food
by [?]

The thickness of the beds in each salt deposit of course depends entirely upon the area of the original sea or salt-lake, and the length of time during which the evaporation went on. Sometimes we may get a mere film of salt; sometimes a solid bed six hundred feet thick. Perfectly pure rock-salt is colourless and transparent; but one doesn’t often find it pure. Alas for a degenerate world! even in its original site, Nature herself has taken the trouble to adulterate it beforehand. (If she hadn’t done so, one may be perfectly sure that commercial enterprise would have proved equal to the occasion in the long run.) But the adulteration hasn’t spoilt the beauty of the salt; on the contrary, it serves, like rouge, to give a fine fresh colour where none existed. When iron is the chief colouring matter, rock-salt assumes a beautiful clear red tint; in other cases it is emerald green or pale blue. As a rule, salt is prepared from it for table by a regular process; but it has become a fad of late with a few people to put crystals of native rock-salt on their tables; and they decidedly look very pretty, and have a certain distinctive flavour of their own that is not unpleasant.

Our English salt supply is chiefly derived from the Cheshire and Worcestershire salt-regions, which are of triassic age. Many of the places at which the salt is mined have names ending in wich, such as Northwich, Middlewich, Nantwich, Droitwich, Netherwich, and Shirleywich. This termination wich is itself curiously significant, as Canon Isaac Taylor has shown, of the necessary connection between salt and the sea. The earliest known way of producing salt was of course in shallow pans on the sea-shore, at the bottom of a shoal bay, called in Norse and Early English a wick or wich; and the material so produced is still known in trade as bay-salt. By-and-by, when people came to discover the inland brine-pits and salt mines, they transferred to them the familiar name, a wich; and the places where the salt was manufactured came to be known as wych-houses. Droitwich, for example, was originally such a wich, where the droits or dues on salt were paid at the time when William the Conqueror’s commissioners drew up their great survey for Domesday Book. But the good, easy-going mediaeval people who gave these quaint names to the inland wiches had probably no idea that they were really and truly dried-up bays, and that the salt they mined from their pits was genuine ancient bay-salt, the deposit of an old inland sea, evaporated by slow degrees a countless number of ages since, exactly as the Dead Sea and the Great Salt Lake are getting evaporated in our own time.

Such, nevertheless, is actually the case. A good-sized Caspian used to spread across the centre of England and north of Ireland in triassic times, bounded here and there, as well as Dr. Hull can make out, by the Welsh Mountains, the Cheviots, and the Donegal Hills, and with the Peak of Derbyshire and the Isle of Man standing out as separate islands from its blue expanse. (We will beg the question that the English seas were then blue. They are certainly marked so in a very fine cerulean tint on Dr. Hull’s map of Triassic Britain.) Slowly, like most other inland seas, this early British Caspian began to lose weight and to shrivel away to ever smaller dimensions. In Devonshire, where it appears to have first dried up, we get no salt, but only red marl, with here and there a cubical cast, filling a hole once occupied by rock-salt, though the percolation of the rain has long since melted out that very soluble substance, and replaced it by a mere mould in the characteristic square shape of salt crystals. But Worcestershire and Cheshire were the seat of the inland sea when it had contracted to the dimensions of a mere salt lake, and begun to throw down its dissolved saline materials. One of the Cheshire beds is sometimes a hundred feet thick of almost pure and crystalline rock-salt. The absence of fossils shows that animals must have had as bad a time of it there as in the Dead Sea of our modern Palestine. The Droitwich brine-pits have been known for many centuries, since they were worked (and taxed) even before the Norman Conquest, as were many other similar wells elsewhere. But the actual mining of rock-salt as such in England dates back only as far as the reign of King Charles II. of blessed memory, or more definitely to the very year in which the ‘Pilgrim’s Progress’ was conceived and written by John Bunyan. During that particular summer, an enterprising person at Nantwich had sunk a shaft for coal, which he failed to find; but on his way down he came unexpectedly across the bed of rock-salt, then for the first time discovered as a native mineral. Since that fortunate accident the beds have been so energetically worked and the springs so energetically pumped that some of the towns built on top of them have got undermined, and now threaten from year to year, in the most literal sense, to cave in. In fact, one or two subsidences of considerable extent have already taken place, due in part no doubt to the dissolving action of rain water, but in part also to the mode of working. The mines are approached by a shaft; and, when you get down to the level of the old sea bottom, you find yourself in a sort of artificial gallery, whose roof, with all the world on top of it, is supported every here and there by massive pillars about fifteen feet thick. Considering that the salt lies often a hundred and fifty yards deep, and that these pillars have to bear the weight of all that depth of solid rock, it is not surprising that subsidences should sometimes occur in abandoned shafts, where the water is allowed to collect, and slowly dissolve away the supporting columns.