**** ROTATE **** **** ROTATE **** **** ROTATE **** **** ROTATE ****

Find this Story

Print, a form you can hold

Wireless download to your Amazon Kindle

Look for a summary or analysis of this Story.

Enjoy this? Share it!

PAGE 2

A Desert Fruit
by [?]

Everything on this earth can best be understood by investigating the history of its origin and development, and in order to understand this curious reversal of the ordinary rule in the cactus tribe we must look at the circumstances under which the race was evolved in the howling waste of American deserts. (All deserts have a prescriptive right to howl, and I wouldn’t for worlds deprive them of the privilege.) Some familiar analogies will help us to see the utility of this arrangement. Everybody knows our common English stone-crops–or if he doesn’t he ought to, for they are pretty and ubiquitous. Now stone-crops grow for the most part in chinks of the rock or thirsty sandy soil; they are essentially plants of very dry positions. Hence they have thick and succulent little stems and leaves, which merge into one another by imperceptible gradations. All parts of the plant alike are stumpy, green, and cylindrical. If you squash them with your finger and thumb you find that though the outer skin or epidermis is thick and firm, the inside is sticky, moist, and jelly-like. The reason for all this is plain; the stone-crops drink greedily by their roots whenever they get a chance, and store up the water so obtained to keep them from withering under the hot and pitiless sun that beats down upon them for hours in the baked clefts of their granite matrix. It’s the camel trick over again. So leaves and stem grow thick and round and juicy within; but outside they are enclosed in a stout layer of epidermis, which consists of empty glassy cells, and which can be peeled off or flayed with a knife like the skin of an animal. This outer layer prevents evaporation, and is a marked feature of all succulent plants which grow exposed to the sun on arid rocks or in sandy deserts.

The tendency to produce rounded stems and leaves, little distinguishable from one another, is equally noticeable in many seaside plants which frequent the strip of thirsty sand beyond the reach of the tides. That belt of dry beach that stretches between high-water mark and the zone of vegetable mould, is to all intents and purpose a miniature desert. True, it is watered by rain from time to time; but the drops sink in so fast that in half an hour, as we know, the entire strip is as dry as Sahara again. Now there are many shore weeds of this intermediate sand-belt which mimic to a surprising degree the chief external features of the cactuses. One such weed, the common salicornia, which grows in sandy bottoms or hollows of the beach, has a jointed stem, branched and succulent, after the true cactus pattern, and entirely without leaves or their equivalents in any way. Still more cactus-like in general effect is another familiar English seaside weed, the kali or glasswort, so called because it was formerly burnt to extract the soda. The glasswort has leaves, it is true, but they are thick and fleshy, continuous with the stem, and each one terminating in a sharp, needle-like spine, which effectually protects the weed against all browsing aggressors.

Now, wherever you get very dry and sandy conditions of soil, you get this same type of cactus-like vegetation–plantes grasses, as the French well call them. The species which exhibit it are not necessary related to one another in any way; often they belong to most widely distinct families; it is an adaptive resemblance alone, due to similarity of external circumstances only. The plants have to fight against the same difficulties, and they adopt for the most part the same tactics to fight them with. In other words, any plant of whatever family, which wishes to thrive in desert conditions, must almost, as a matter of course, become thick and succulent, so as to store up water, and must be protected by a stout epidermis to prevent its evaporation under the fierce heat of the sunlight. They do not necessarily lose their leaves in the process; but the jointed stem usually answers the purpose of leaves under such conditions far better than any thin and exposed blade could do in the arid air of a baking desert. And therefore, as a rule, desert plants are leafless.